



**Defoamers** 




Fire extinguishers



Plastics



Silicone sealants





Greases



Silicone rubber



Paints, inks, coatings and toners



Cosmetics



Polyester resins



In 1991, Performance Process, Inc.(PPI) was founded in Mundelein, Illinois to produce fumed and precipitated treated silicas. Nine years later PPI installed a new state-of-the-art treated silica production unit at the Nottingham Company facility in Atlanta, Georgia, which more than doubled their capacity and reduced delivery time for their customers in the Southeast. In 2015, AMS purchased PPI, and in 2016 we expanded our silica production and consolidated facilities to our Burlington, WI plant.

## **Applications**

Our fumed and precipitated silicas are used in a wide range of applications including adhesives, agriculture, cable gels, coatings, cosmetics, defoamers, fire extinguishers, food, greases, inks, paints, plastics, polyester resins, silicone rubber, silicone sealants, toners, and more areas.

### **Benefits**

The benefits of fumed and precipitated silica are diverse. These ingredients can work as an adsorbent, and they can provide anti-setting, anti-sagging, anti-setoff, anti-blocking and reinforcement. They encourage the free flow of

powders, improve mechanical and optical properties, pigment stabilization and dispersion, and print definition. In addition, improvements are achieved when they are used for processability, hydrophobicity control, thickening, thixotropy, rheology control, and suspension and stability behavior.

## **Excellent Quality**

The foundation of every product we develop is its formulation. We lead the industry in accuracy, consistency and performance. In our cutting edge laboratories, we have the equipment needed to ensure that procedures are followed meticulously. Our attention to detail throughout the process results in substantial savings for our customers in both time and costs.

## Collaboration

It is essential that we collaborate with our customers at every step in the formulation process, from initial discussion through development, installation, production, and performance evaluations. For us, working closely together is the reason for our success.



# **Hydrophobic Silica** - Fumed & Precipitated AMSil

## **Adsorbent and Carrier**

Adsorbs gaseous, liquid or solid materials and acts as a carrier to allow conversion of liquid and pastes into powder, making them considerably easier to dose and handle.

## **Applications**

- · Coatings & paints
- Polyester resins & gel coats
- Pharmaceuticals & cosmetics
- PVC based plastics

#### **Defoamers and Antifoams**

- Food direct and indirect applications
- Paints and coatings
- Inks
- Adhesives
- Paper
- Textiles

## **Electrostatic Charge Effects**

Reduce the tendency of plastic powders to acquire a negative electrostatic charge, eliminating characteristics that are undesirable.

#### **Applications**

- Batteries
- Coatings & paints
- PVC based plastics

## Free Flow and Storage

Greatly increases the free flow and storage stability of powdered substances that have a tendency to cake.

#### **Applications**

- · Coatings & paints
- Defoamers & antifoams
- Pharmaceuticals & cosmetics
- Polyester resins & gel coats
- Printing inks
- PVC based plastics
- Fire extinguisher powder
- Table salt
- Tomato powder
- Tablet powder blends
- Plastic powders
- Toners

## **High Temperature Insulation**

Outstanding thermal insulation properties due to the fact that amorphous silicon dioxide has a very low solid state conductivity.

#### **Applications**

- Cable gels
- Rubber & rubber compounding
- Thermal insulation





## **Providing Improvements for Many Products**

## **Printer and Copier Toner**

Improves the flow characteristics and charge stability as well as, enhances the resolution and print quality of toners.

#### **Applications**

• Printing inks and toners

#### **Reinforcement of Elastomers**

Improves mechanical properties, such as tensile strength, elongation at break, and tear resistance, and helps to control the influence of temperature on mechanical properties.

#### **Applications**

- Adhesives & sealants
- Rubber & rubber compounds
- Molding, sealing & casting compounds

## **Electrostatic Charge Effects**

Prevent or delay sedimentation of solids in liquid systems, re-disperse settled sediments without problems, and break down solid particles and prevent them from recombining.

#### **Applications**

- Coatings & paints
- Resins containing fillers

## **Thickening and Thixotropy**

Particles restore original viscosity when in a state of rest, reversing thickening with a minimum amount of energy.

#### **Applications**

- Adhesives & sealants
- Cable gels
- Greases
- Polyester resins & gel coats
- Resins containing fillers



## **Electrostatic Charge Effects**

Remains chemically stable when stored under dry conditions, protected from volatile substances, and used within two years.



## AMSil Hydrophobic Silica—Fumed

| Product | Properties |          |         |          |          |         |                  |  |  |
|---------|------------|----------|---------|----------|----------|---------|------------------|--|--|
|         | surface    |          |         |          |          |         |                  |  |  |
|         | area       | Average  | Tapped  |          |          |         | SiO <sub>2</sub> |  |  |
|         | (BET)      | particle | density | Ignition | Moisture |         | content          |  |  |
| AMSil-F | m²/g       | size nm  | g/I     | loss wt% | wt%      | рН      | wt%              |  |  |
|         |            |          |         |          |          |         |                  |  |  |
| H22     | 130±30     | 12       | 50      | 4.0-6.0  | ≤0.5     | 4.0-6.0 | ≥99.8            |  |  |

## AMSil Hydrophobic Silica—Precipitated

| Product | Properties                             |                                |                         |          |        |                         |  |  |  |
|---------|----------------------------------------|--------------------------------|-------------------------|----------|--------|-------------------------|--|--|--|
| AMSil   | Specific<br>surface area<br>(BET) m³/g | Average<br>particle size<br>μm | Bulk density<br>lbs/ft² | рН       | Form   | Hydrophobicity<br>Level |  |  |  |
| 35      | 120-140                                | 6-7                            | 8-9                     | 8-9      | Powder | Standard                |  |  |  |
| 35 FGK  | 120-140                                | 6-7                            | 8-9                     | 8-9      | Powder | Standard                |  |  |  |
| 355     | 120-140                                | 6-7                            | 8-9                     | 8-9      | Powder | Med high                |  |  |  |
| 358     | 120-140                                | 6-7                            | 8-9                     | 8-9      | Powder | Highest                 |  |  |  |
| 63      | 140                                    | 9                              | 8-9.5                   | 8-9      | Powder | Standard                |  |  |  |
| 63FGK   | 140                                    | 9                              | 8-9.5                   | 8-9      | Powder | Standard                |  |  |  |
| 66      | 140                                    | 4                              | 8-9                     | 10.5 max | Powder | Standard                |  |  |  |
| 66 FGK  | 140                                    | 4                              | 8-9                     | 10.5 max | Powder | Standard                |  |  |  |
| 665     | 140                                    | 4                              | 8-9                     | 10.5 max | Powder | Med high                |  |  |  |
| 668     | 140                                    | 4                              | 8-9                     | 10.5 max | Powder | Highest                 |  |  |  |
| 70 FGK  | 100-110                                | 7                              | 8-9.5                   | 8-9      | Powder | Standard                |  |  |  |
| 708     | 100-110                                | 7                              | 8-9.5                   | 8-9      | Powder | Highest                 |  |  |  |
| 80      | 80                                     | 12                             | 8-10                    | 8-9      | Powder | Standard                |  |  |  |
| 80 FGK  | 80                                     | 12                             | 8-10                    | 8-9      | Powder | Standard                |  |  |  |
| 805     | 80                                     | 12                             | 8-10                    | 8-9      | Powder | Med high                |  |  |  |
| 90X     | 90                                     | 8.5                            | 8-10                    | 8-9      | Powder | Standard                |  |  |  |

| Applicatio | ns                          |                    |          |                   |          |                        |                           |   |                  |                 |
|------------|-----------------------------|--------------------|----------|-------------------|----------|------------------------|---------------------------|---|------------------|-----------------|
| Adhesives  | Defoamers<br>&<br>antifoams | Silicone<br>rubber | Sealants | Paints & coatings | Plastics | Printing inks & toners | Cable gels<br>& gel coats |   | Plant protection | Epoxy<br>resins |
| <b>✓</b>   | <b>✓</b>                    |                    | <b>✓</b> | J                 | <b>√</b> |                        | <b>√</b>                  | · |                  | ✓               |

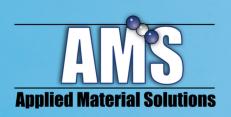
| Applications                |          |         |                             |                       |        |          |             |                          |  |
|-----------------------------|----------|---------|-----------------------------|-----------------------|--------|----------|-------------|--------------------------|--|
| Defoamers<br>&<br>antifoams | Rheology | Powders | Food &<br>food<br>additives | Fire<br>extinguishers | Resins | Plastics | Agriculture | Anti-caking/<br>Flow aid |  |
| ✓                           | 1        | ✓       |                             |                       | 1      | 1        | <b>√</b>    | 1                        |  |
| ✓                           | 1        | 1       | ✓                           |                       | 1      | 1        | <b>√</b>    | 1                        |  |
| ✓                           | 1        | 1       |                             | 1                     | 1      | 1        | <b>V</b>    | 1                        |  |
| ✓                           | 1        | 1       |                             |                       | 1      | 1        | <b>√</b>    | 1                        |  |
| ✓                           | 1        | 1       |                             | 1                     | 1      | 1        | <b>√</b>    | 1                        |  |
| ✓                           | 1        | 1       | ✓                           |                       | 1      | 1        | ✓           | 1                        |  |
| ✓                           | 1        | 1       |                             |                       | 1      | 1        | ✓           | <b>✓</b>                 |  |
| ✓                           | 1        | 1       | <b>V</b>                    |                       | 1      | 1        | <b>✓</b>    | <b>✓</b>                 |  |
| ✓                           | 1        | 1       |                             | <b>✓</b>              | 1      | 1        | <b>✓</b>    | <b>✓</b>                 |  |
| ✓                           | 1        | 1       |                             |                       | 1      | 1        | ✓           | 1                        |  |
| ✓                           | 1        | 1       | ✓                           |                       | 1      | 1        | <b>√</b>    | 1                        |  |
| ✓                           |          | 1       |                             | 4                     | 1      | 1        | ✓           | 1                        |  |
| <b>✓</b>                    | <b>✓</b> | 1       |                             |                       | 1      | 1        | ✓           | 1                        |  |
| <b>✓</b>                    | <b>✓</b> | 1       | 1                           |                       | 1      | 1        | ✓           | 1                        |  |
| <b>✓</b>                    | ✓        | 1       |                             |                       | 1      | 1        | ✓           | 1                        |  |
| 1                           | 1        | 1       | 1                           | 4                     | 1      | 1        | ✓           | 1                        |  |





AMS: Our Story

## **About AMS**


Scan the QR codes to learn more about AMS.



AMS: Factory Tour

Applied Material Solutions, Inc. offers hydrophobic treated silica, antifoam and defoamer products, silicone emulsions, colloidal silica, corn oil demulsifiers and more. AMS is

headquartered in Elkhorn, WI, with manufacturing plants in Burlington, WI and Rockton, IL.



## Applied Material Solutions, Inc. Headquarters

1001 E. Centralia Street Elkhorn, WI 53121



(262) 723-6595

info@amsi-usa.com

www.appliedmaterialsolutions.com